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Abstract

In this note, we investigate the efficiency of the greedy algorithm for the classes of multivariate periodic
functions with low mixed smoothness in Lq with regard to the wavelet-type basis. We find that the order of
greedy approximation in the case of low smoothness is different for some range of parameters.
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1. Introduction and main results

Let T d = [0, 1]d be the d-dimensional torus, and let Lq := Lq([0, 1]d), 1�q < ∞, be the
Banach space of measurable functions f (x) = f (x1, . . . , xd), which is 1-periodic with respect
to each variable. Its norm is defined by

‖f ‖q :=
(∫

[0,1]d
|f (x)|q dx

)1/q

.

The aim of this note is to investigate the efficiency of the greedy algorithm for the classes
of multivariate periodic functions with low mixed smoothness in Lq . Denote by D the set of
dyadic intervals of [0, 1], each interval I in D being of the form I = [j2−k, (j + 1)2−k],
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k = 0, 1, 2, . . . , j = 0, 1, . . . , 2k − 1. Denote by Dd the set of all dyadic intervals of [0, 1]d ,
each I ∈ Dd being of the form I = I1 × · · · × Id with I1, . . . , Id ∈ D. Assume that a given
system � = {�I }I∈Dd of functions �I indexed by dyadic intervals can be enumerated in such a
way that {�I j }∞j=1 is a basis for Lq (1�q < ∞). Then we define the greedy algorithm G

q
m(·, �)

(1�q < ∞) as follows. Let

f =
∞∑

j=1

cIj (f, �)�I j , cI (f, q,�) := ‖cI (f, �)�I‖q .

Denote by �m the set of m dyadic intervals such that

min
I∈�m

cI (f, q,�)� sup
J /∈�m

cJ (f, q,�).

The set �m may not be unique but if this happens we may take any of such sets. We define the
greedy operator Gq(·, �) by

G
q
m(f ) := G

q
m(f, �) :=

∑
I∈�m

cI (f, �)�I .

The operator G
q
m(·, �) is a non-linear and discontinuous operator (see [1,9,10,13]).

Let us recall the definition of the best m-term approximation. Denote by Mm(�) the set of all
linear combinations of the form

g =
∑

I∈�m

aI�I ,

where �m is a set of m dyadic intervals, aI are real numbers. For a function class F ⊂ Lq , we
consider the quantity

�m(F, �)q := sup
f ∈F

�m(f, �)q := sup
f ∈F

inf
g∈Mm(�)

‖f − g‖q .

We call the quantities �m(f, �)q and �m(F, �)q the best m-term approximation of f and F with
regard to �, respectively (see [1,9,10,12,13]).

For e ⊂ ed := {1, 2, . . . , d}, r > 0, let Dre
f (x) = (∏

j∈e
�r

�xr
j

)
f (x) be the generalized

derivative of f in the sense of Weyl (see [6,7]). Then the Sobolev classes MW r
p of functions with

mixed derivative are defined as follows:

MW r
p :=

{
f ∈ Lp([0, 1]d)

∣∣ ‖f ‖Wr
p

:=
∑
e⊂ed

‖Dre

f ‖p �1

}
, 1�p < ∞.

Let r > 0, and let l > r be a fixed positive integer. Then the Hölder–Nikolskii classes MHr
p of

functions with mixed difference are defined in the following way (see [6,7]):

MHr
p :=

⎧⎨
⎩f ∈ Lp([0, 1]d)

∣∣ ‖f ‖Hr
p

:=
∑
e⊂ed

sup
t>0

∏
j∈e

t−r
j · ‖�le

tef ‖p �1

⎫⎬
⎭ , 1�p < ∞,
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where t = (t1, . . . , td ) > 0, (i.e., tj > 0, j = 1, . . . , d), and

�le

tef (x) :=
⎛
⎝∏

j∈e

�l
tj ,j

⎞
⎠ f (x),

�l
tj ,j f (x) :=

l∑
k=0

(−1)l−k

(
l

k

)
f (x1, . . . , xj + ktj , . . . , xd).

Denote by O the set of all orthogonal bases on [0, 1]d . For the above classes and the anisotropic
classes, Temlyakov proved that the orthogonal basis Ud formed from the integer traslates of the
mixed dyadic scales of the tensor product multivariate Dirichlet kernel (or more generally, the
wavelet-type basis �d , see the definition in Section 2) is optimal in the sense of order among all
orthogonal systems for some range of parameters (see [9,10]). For example, for 1 < p < ∞, r >

(1/2 − 1/p)+, it was shown in [9] that:

�m(MW r
p, O)2 := inf

D∈O
�m(MW r

p, D)2 � �m(MW r
p, Ud)2,

�m(MHr
p, O)2 := inf

D∈O
�m(MHr

p, D)2 � �m(MHr
p, Ud)2.

Furthermore, Temlyakov proved that for all 1 < q, p < ∞, the orders of the best m-term
approximations �m(MW r

p, Ud)q and �m(MHr
p, Ud)q can be achieved by the greedy algorithm

Gq(·, Ud). For 1 < p, q < ∞,

r1(p, q) :=
{

max(1/p, 1/2) − 1/q, q �2,

(max(2/p, 2/q) − 1)/q, q < 2,

r2(p, q) :=
{

(1/p − 1/q)+, q �2,

(max(2/p, 2/q) − 1)/q, q < 2,

Temlyakov obtained the following results (see [9]):

�m(MW r
p, Ud)q � sup

f ∈MW r
p

‖f − G
q
m(f, Ud)‖q � m−r (log2 m)(d−1)r ,

if r > r1(p, q), (1.1)

�m(MHr
p, Ud)q � sup

f ∈MHr
p

‖f − G
q
m(f, Ud)‖q � m−r (log2 m)(d−1)(r+1/2),

if r > r2(p, q), (1.2)

where a+ := max{a, 0}; A � B means that A>B and B>A; and A>B means that there exists
a positive constant c such that A�cB.

However, for the wavelet-type basis �d , the greedy algorithm G
q
m(·, �d) does not provide

asymptotically optimal error for the best m-term approximation, since the following result holds
(see [8,13]):

sup
f ∈Lq

‖f − G
q
m(f, �d)‖q

/
�m(f, �d)q � (log2 m)(d−1)|1/2−1/q| (1 < q < ∞). (1.3)

The above formula (1.3) shows that using the greedy algorithm G
q
m(·, �d) we lost near-best

accuracy for some functions f ∈ Lq, q �= 2, while (1.1), and (1.2) indicate that for all 1 <

q, p < ∞ and big enough r , the orders of the best m-term approximations �m(MW r
p, �d)q and
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�m(MHr
p, �d)q can be achieved by the greedy algorithm G

q
m(·, �d). How about the efficiency

of the greedy algorithm for the classes MW r
p, MHr

p without sufficiently large r? For the Sobolev
classes MW r

p, the case 1 < p�2�q < ∞ has been studied in [9] for all r > 1/p − 1/q. In the
case 1 < p < ∞, 1 < q < 2 we can extend the results of [9] to the case of low smoothness
(the order is the same). The most interesting case is 2 < q, p < ∞. Here we prove that the
results from [9], concerning the greedy algorithm, cannot be extended in their form to the low
smoothness case. We discover a new phenomenon: the order of greedy approximation in the case
of low smoothness is different. This phenomenon is known in the case of Kolmogorov’s widths
(see [4,5]). For the Hölder–Nikolskii classes, we also obtain the upper estimates in the case of
low smoothness. Our main results are the following.

Theorem 1. Let 1 < p, q < ∞. Then for (1/p − 1/q)+ < r �1/2 − 1/q, p > 2, q > 2, we
have

sup
f ∈MW r

p

‖f − G
q
m(f, �d)‖q � m−r (log2 m)

(d−1)r
2(r+1/q) ,

and for (1/p − 1/q)+ < r �(max(2/p, 2/q) − 1)/q, q < 2, we have

sup
f ∈MW r

p

‖f − G
q
m(f, �d)‖q � m−r (log2 m)(d−1)r .

Theorem 2. Let 1 < p < ∞, 1 < q < 2, and r > (1/p−1/q)+. Then for r < (2/p−1)/q, p <

2, we have

sup
f ∈MHr

p

‖f − G
q
m(f, �d)‖q>m−r (log2 m)

(d−1)( 1
pq(r+1/q)

+r)
,

for r = (2/p − 1)/q, p < 2, we have

sup
f ∈MHr

p

‖f − G
q
m(f, �d)‖q>m−r (log2 m)(d−1)(r+1/2) log2(log2 m),

and for p > q, (2/p − 1)+/q < r �(2/q − 1)/q, we have

sup
f ∈MHr

p

‖f − G
q
m(f, �d)‖q>m−r (log2 m)(d−1)(r+1/2).

Remark 1.1. The lower estimate corresponding to the third upper estimate in Theorem 2 follows
from [9] (see [9] or Lemma 2.1 in Section 2).

Remark 1.2. We do not know the exact orders of �m(MW r
p, �d)q for 2 < p, q < ∞, (1/p −

1/q)+ < r �1/2 − 1/q and �m(MHr
p, �d)q, sup

f ∈MHr
p

‖f − G
q
m(f, �d)‖q for 1 < p, q <

2, (1/p − 1/q)+ < r �(2/p − 1)/q. It is an open problem.

Remark 1.3. For 1 < p, q < ∞, r > (1/p − 1/q)+, from the above upper estimates and the
known lower estimates of the best m-term approximation (see [9] or Lemma 2.1 in Section 2),
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we get

1 �
supf ∈MW r

p
‖f − G

q
m(f, �d)‖q

�m(MW r
p, �d)q

>

{
(log2 m)

(d−1)
r(1/2−r−1/q)

r+1/q , q > 2, r < 1/2 − 1/q,

1, q �2 or q > 2, r �(1/2 − 1/q)+

and

1 �
supf ∈MHr

p
‖f − G

q
m(f, �d)‖q

�m(MHr
p, �d)q

>

⎧⎪⎨
⎪⎩

(log2 m)
(d−1)

2−p−pqr
2pq(r+1/q) , p, q < 2, r < (2/p − 1)/q,

log2(log2 m), p, q < 2, r = (2/p − 1)/q,

1, q �2 or q < 2, r > (2/p − 1)+/q.

2. Wavelet-type system and lower estimates

First, we discuss the wavelet-type system �d = {�I }I∈Dd . For any s ∈ Zd , s�0 (i.e., sj �0,
j = 1, . . . , d), we write �(s) := {I = I1 ×· · ·× Id ∈ Dd | |Ij | = 2−sj , j = 1, 2, . . . , d}, where
|Ij | denotes the length of the interval Ij . It is easy to see that #�(s) = 2|s|, where #�(s) denotes
the number of intervals in �(s), |s| := s1 + · · · + sd .

We suppose the system �d satisfies the following properties:

(1) �d is a basis of the space Lp([0, 1]d) (1 < p < ∞), that is, for each f ∈ Lp([0, 1]d), f

has a unique representation

f =
∑

I∈Dd

fI�I =
∑
s �0

�sf ; �sf :=
∑

I∈�(s)

fI�I , fI := cI (f, �d)

and the sum converges in Lp. Furthermore, the system �d is Lp-equivalent to the Haar

system Hd (1 < p < ∞). Let H(t) =
⎧⎨
⎩

1, t ∈ [0, 1/2),

−1, t ∈ [1/2, 1),

0, otherwise
hI (t) = 2n/2H(2nt −k), for a

dyadic interval I = [k2−n, (k + 1)2−n] ∈ D and h[0,1](t) = 1. For I = I1 × · · · × Id ∈ Dd ,
we set

hI (x) = hI1(x1) · · · hId
(xd), x = (x1, . . . , xd).

We say that the system �d is Lp-equivalent to the Haar system Hd := {hI }I∈Dd if for any
finite set � ⊂ Dd and for any coefficients cI , we have (see [2])

∥∥∥∥∥∥
∑
I∈�

cI�I

∥∥∥∥∥∥
p

�
∥∥∥∥∥∥
∑
I∈�

cI hI

∥∥∥∥∥∥
p

.
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Applying the methods in [2] or [11], we know that the system �d satisfies the Littlewood–
Paley inequalities:

‖f ‖p �

∥∥∥∥∥∥∥
⎛
⎝∑

I∈Dd

∣∣fIhI

∣∣2
⎞
⎠

1
2

∥∥∥∥∥∥∥
p

�

∥∥∥∥∥∥∥
⎛
⎝∑

s �0

∣∣�sf
∣∣2
⎞
⎠

1
2

∥∥∥∥∥∥∥
p

. (2.1)

(2) For any I ∈ Dd , 1 < q, p < ∞, we have

‖�I‖2 � 1, ‖�I‖p � |I |1/p−1/2, ‖�I‖p � ‖�‖q · |I | 1
p

− 1
q . (2.2)

(3) For f ∈ Lp([0, 1]d), 1 < p < ∞, we have

‖�sf ‖p
p =

∥∥∥∥∥∥
∑

I∈�(s)

fI�I

∥∥∥∥∥∥
p

p

�
∑

I∈�(s)

‖fI�I‖p
p. (2.3)

(4) For 1 < p < ∞, r > 0, we have the following representation theorems of functions with
mixed smoothness by �d :

‖f ‖Wr
p

�

∥∥∥∥∥∥∥
⎛
⎝∑

I∈Dd

|I |−2r
∣∣fIhI

∣∣2
⎞
⎠

1
2

∥∥∥∥∥∥∥
p

�

∥∥∥∥∥∥∥
⎛
⎝∑

s �0

22r|s|∣∣�sf
∣∣2
⎞
⎠

1/2
∥∥∥∥∥∥∥

p

, (2.4)

‖f ‖Hr
p

� sup
s �0

2r|s|‖�sf ‖p. (2.5)

We say that �d is a wavelet-type basis, if the system �d satisfies the above conditions, From
[9,3,12], we know that the basis Ud , the basis V formed from the integer translates of the mixed
dyadic scales of the tensor product multivariate de la Valleé Poussin kernel, and the multivariate
tensor product periodic wavelet basis Wd with ∞-regular univariate wavelet, all they are examples
of wavelet-type bases. From [9] we know the following

Lemma 2.1. Suppose that 1 < p, q < ∞, and r > (1/p − 1/q)+. Then

�m(MW r
p, �d)q?m−r (log m)(d−1)r ,

�m(MHr
p, �d)q?m−r (log m)(d−1)(r+1/2). (2.6)

Lemma 2.2. Suppose that 2 < q < ∞, and (1/p − 1/q)+ < r �1/2 − 1/q. Then

sup
f ∈MW r

p

‖f − G
q
m(f, �d)‖q?m−r (log2 m)

(d−1)r
2(r+1/q) .

Proof. Choose two positive integers J and l such that m � 2J J d−1, 2J+l �m and 2l �
(log2 m)(d−1). Choose s0 ∈ Zd , s0 �0 such that |s0| = J + l. Let A := {I : |I | = 2−J+l′ }, B :=
�(s0), where 2l′ � (log2 m)

(d−1)
1/2−(r+1/q)

r+1/q . Then #B = 2J+l �m. Let gAq = ∑
I∈A |I |1/2−1/q�I ,
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gBq = ∑
I∈B |I |1/2−1/q�I . From (2.2) we know that there exists a constant c > 0 such that

f0 − G
q
m(f0, �d) = gAq, where f0 = gAq + cgBq. Then by (2.1) and (2.4) we have

‖gAq‖q � 2(J−l′)(1/q−1/2)

∥∥∥∥∥∥∥
⎛
⎝ ∑

‖s‖1=J−l′

∑
I∈�(s)

|hI |2
⎞
⎠

1/2
∥∥∥∥∥∥∥

q

� 2(J−l′)/qJ (d−1)/2

and

‖gAq‖Wr
p

� 2(r+1/q)(J−l′)J
d−1

2 .

Since

‖gBq‖Wr
p

� 2(J+l)(1/q−1/2)2r(J+l)

(∑
I∈B

‖�I‖p
p

)1/p

� 2(J+l)(r+1/q),

we obtain

‖f0‖Wr
p

� 2(r+1/q)(J−l′)J
d−1

2 + 2(J+l)(r+1/q) � 2(r+1/q)(J−l′)J
d−1

2

and

sup
f ∈MW r

p

‖f − G
q
m(f )‖q?‖gAq‖q

/ ‖f0‖Wr
p

� 2(J−l′)/qJ
d−1

2 2−(r+1/q)(J−l′)J− d−1
2 � 2−rJJ

(d−1)
r(1/2−(r+1/q))

r+1/q .

Lemma 2.2 is proved. �

Remark 2.1. In the proof of Lemma 2.2, it is essential that the basis is equivalent to the tensor
product Haar basis. Here properties (2.2)–(2.5) (with exception of the middle part in (2.4)) would
be not sufficient for the given estimate. Also the example used in this proof does not improve
(2.6).

3. Upper estimates

For f ∈ Lq([0, 1]d), 1 < q < ∞, we have

f =
∑

I∈Dd

fI�I =
∑
s �0

�sf, G
q
m(f ) = G

q
m(f, �d) =

∑
I∈�m

fI�I ,

where �m is a set of m dyadic intervals satisfying

Vq := Vq(f ) := min
I∈�m

‖fI�I‖q � sup
J /∈�m

‖fJ �J ‖q . (3.1)

For s ∈ Zd , s�0, we set

�′(s) := �m ∩ �(s), �′′(s) := �(s) \ �′(s).

Choose a positive integer J such that

m�2#
(

∪|s|�J �(s)
)
, m � 2J J d−1. (3.2)
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Then

‖f − G
q
m(f )‖q =

∥∥∥∥∥∥
∑
s �0

∑
I∈�′′(s)

fI�I

∥∥∥∥∥∥
q

>
∑
n�0

∥∥∥∥∥∥
∑
|s|=n

∑
I∈�′′(s)

fI�I

∥∥∥∥∥∥
q

=:
∑
n�0

Tn. (3.3)

Lemma 3.1. Suppose 1 < p < ∞. Then for any f ∈ MW r
p, we have

⎛
⎝∑

s �0

2rpl |s|‖�sf ‖pl
p

⎞
⎠

1/pl

>‖f ‖Wr
p
>

⎛
⎝∑

s �0

2rpu|s|‖�sf ‖pu
p

⎞
⎠

1/pu

, (3.4)

where pl := max(2, p); pu := min(2, p).

The proof of the case r = 0 (where ‖f ‖W 0
p

= ‖f ‖p) is given in [6], the proof of the case r > 0
is similar, we omit it.

Lemma 3.2. Suppose that f ∈ MW r
t , and r �1/t − 1/q. Then we have

Vq = Vq(f )>

{
2−(r+1/q)J J− d−1

t , 2� t �q < ∞,

2−(r+1/q)J J− d−1
2 , 1 < t �q < 2.

(3.5)

Proof. For t < q, f ∈ MW r
t , we have

#(�′(s)) · V t
q �

∑
I∈�′(s)

‖fI�I‖t
q>

∑
I∈�′(s)

2(1/t−1/q)t |s| · ‖fI�I‖t
t

> 2(1/t−1/q)t |s|‖�sf ‖t
t . (3.6)

Since

m · V t
q =

∑
s

#(�′(s)) · V t
q �V t

q · #(∪|s|�J �(s)) + V t
q · #(∪|s|>J �′(s))

for r �1/t − 1/q, t �2, by (3.2) and (3.6) we get

2J J d−1 · V t
q>V t

q · #(∪|s|>J �′(s))>
∑
|s|>J

2(1/t−1/q)t |s|‖�sf ‖t
t . (3.7)

For r �1/t − 1/q, t �2, by (3.4) we have

2J J d−1 · V t
q>2−(r−1/t+1/q)J

⎛
⎝∑

|s|>J

2rtn‖�sf ‖t
t

⎞
⎠>2−(r−1/t+1/q)J .

And for 1 < t �q < 2, by (3.7) and (3.4) we have

2J J d−1 · V t
q >

⎛
⎝∑

|s|>J

2−(r−1/t+1/q)|s|t · 2
2−t

⎞
⎠

2−t
2

·
⎛
⎝∑

|s|>n

22r|s|‖�sf ‖2
t

⎞
⎠

t/2

> 2−(r−1/t+1/q)tJ J (d−1)(2−t)/2.

Hence (3.5) holds. The proof of Lemma 3.2 is complete. �
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Applying the same methods as in Lemma 3.2, we can get

Lemma 3.3. Let 1 < t, q < ∞, q < 2, f ∈ MHr
t , and r > (1/t − 1/q)+. Then we have

Vq = Vq(f )>2−(r+1/q)J . (3.8)

Remark 3.1. The case 1 < t �q < 2 in Lemma 3.2 follows from [9, Lemma 3.1], Lemma 3.3
follows from [9, Lemma 2.1]. In general, the technique for upper estimates here is a refinement
of the technique from [9].

Lemma 3.4. Let 1 < t �q < ∞. Then for f ∈ MW r
t , we have

Tn :=
∥∥∥∥∥∥
∑
|s|=n

∑
I∈�′′(s)

fI�I

∥∥∥∥∥∥
q

>2−(r−1/t+1/q)tn/qn
(d−1)

q−t
2q V

1−t/q
q . (3.9)

Proof. By (2.1) and (2.4) we get

Tn �

∥∥∥∥∥∥∥
⎛
⎝∑

|s|=n

∑
I∈�′′(s)

|fIhI |2
⎞
⎠

1/2
∥∥∥∥∥∥∥

q

;

‖f ‖Wr
t

�

∥∥∥∥∥∥∥
⎛
⎝∑

n�0

22rn
∑
|s|=n

∑
I∈�(s)

|fIhI |2
⎞
⎠

1/2
∥∥∥∥∥∥∥

t

. (3.10)

Then, by (3.1) we have⎛
⎝∑

|s|=n

∑
I∈�′′(s)

|fIhI (x)|2
⎞
⎠

q/2

�

⎛
⎝∑

|s|=n

∑
I∈�′′(s)

2−2rtn/q · 22rtn/q |fIhI (x)|2
⎞
⎠

q/2

�

⎛
⎝∑

|s|=n

∑
I∈�′′(s)

22rn|fIhI (x)|2
⎞
⎠

t/2⎛
⎝∑

|s|=n

2− 2rtn
q−t

∑
I∈�′′(s)

|fIhI (x)|2
⎞
⎠

(q−t)/2

>

⎛
⎝∑

|s|=n

∑
I∈�′′(s)

22rn|fIhI (x)|2
⎞
⎠

t/2⎛
⎝∑

|s|=n

2− 2rtn
q−t 2−2(1/2−1/q)n2nV 2

q

⎞
⎠

(q−t)/2

>2−(r−1/t+1/q)tnn(d−1)(q−t)/2V
q−t
q

⎛
⎝∑

|s|=n

∑
I∈�′′(s)

22rn|fIhI (x)|2
⎞
⎠

t/2

.

Using (3.10) we get (3.9). Lemma 3.4 is proved. �
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Lemma 3.5. Let 1 < q, p� t �2 < ∞. Then for f ∈ MHr
p, we have

Tn :=
∥∥∥∥∥∥
∑
|s|=n

∑
I∈�′′(s)

fI�I

∥∥∥∥∥∥
q

>2−(rp−(t−p)/q)n/tn(d−1)/tV
1−p/t
q . (3.11)

Proof. Using the similar methods as in Lemma 3.4, we get

Tn :=
∥∥∥∥∥∥
∑
|s|=n

∑
I∈�′′(s)

fI�I

∥∥∥∥∥∥
q

>

∥∥∥∥∥∥
∑
|s|=n

∑
I∈�′′(s)

fI�I

∥∥∥∥∥∥
t

>

⎛
⎝∑

|s|=n

∥∥∥∥∥∥
∑

I∈�′′(s)
fI�I

∥∥∥∥∥∥
t

t

⎞
⎠

1/t

>

⎛
⎝∑

|s|=n

2tn(1/q−1/t)
∑

I∈�′′(s)
‖fI�I‖t

q

⎞
⎠

1/t

>

⎛
⎝∑

|s|=n

2tn(1/q−1/t)
∑

I∈�′′(s)
‖fI�I‖p

q · V
t−p
q

⎞
⎠

1/t

>

⎛
⎝∑

|s|=n

2tn(1/q−1/t)2pn(1/p−1/q)
∑

I∈�(s)

‖fI�I‖p
p

⎞
⎠

1/t

V
1−p/t
q

> 2
(t−p)n

tq

⎛
⎝∑

|s|=n

‖�sf ‖p
p

⎞
⎠

1/t

V
1−p/t
q

> 2−(rp−(t−p)/q)n/tn(d−1)/tV
1−p/t
q . �

Lemma 3.6. Let 2 < p�q < ∞, and f ∈ MW r
p. Then for 1/p − 1/q < r < 1/2 − 1/q, we

have

‖f − G
q
m(f )‖q>2−rJJ

(d−1)
r(1/2−(r+1/q))

r+1/q .

Proof. Let l = [u(d − 1) log2 J ], u = 1/2−(r+1/q)
r+1/q

. By (3.3) we have

‖f − G
q
m(f )‖q �

∑
n�J−l

Tn +
∑

n>J−l

Tn =: T ′ + T ′′.

Using Lemma 3.2 with 1/t = r + 1/q, 2 < t < p, we get

Vq>2−(r+1/q)J J−(d−1)(r+1/q). (3.12)

Applying (3.9) with t = 2 and p, we get

T ′ :=
∑

n�J−l

Tn>
∑

n�J−l

2−(r−1/2+1/q)2n/qn
(d−1)

q−2
2q V

1−2/q
q

> 2−2(r−1/2+1/q)(J−l)/qJ
(d−1)

q−2
2q

(
2−(r+1/q)J J−(d−1)(r+1/q)

)1−2/q

> 2−rJJ
(d−1)

r(1/2−(r+1/q))
r+1/q
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and

T ′′ :=
∑

n>J−l

Tn>
∑

n>J−l

2−(r−1/p+1/q)pn/qn
(d−1)

q−p
2q

(
2−(r+1/q)J J−(d−1)(r+1/q)

)1−p/q

> 2−rJ2(r−1/p+1/q)pl/qJ (d−1)(1/2−r−1/q)(1−p/q)>2−rJJ
(d−1)

r(1/2−(r+1/q))
r+1/q .

Lemma 3.6 is proved. �

Lemma 3.7. Suppose that f ∈ MW r
p, 1 < p�q < 2, 1/p − 1/q < r �(2/p − 1)/q or

2 < p�q < ∞, r = 1/2 − 1/q. Then we have

‖f − G
q
m(f )‖q>2−rJ .

Proof. By (3.3) we have

‖f − G
q
m(f )‖q �

∑
n�J

Tn +
∑
n>J

Tn =: T 1 + T 2.

Using Lemma 3.2 with t = min(p, 2), we get

Vq>2−(r+1/q)J J−(d−1)/2.

Applying the Littlewood–Paley inequality (2.1), we obtain

T 1 :=
∑
n�J

Tn �
∑
n�J

∥∥∥∥∥∥∥
⎛
⎝∑

|s|=n

∑
I∈�′′(s)

∣∣fIhI

∣∣2
⎞
⎠

1
2

∥∥∥∥∥∥∥
q

>
∑
n�J

∥∥∥∥∥∥∥
⎛
⎝∑

|s|=n

∑
I∈�(s)

2−2(1/2−1/q)nV 2
q

∣∣hI

∣∣2
⎞
⎠

1
2

∥∥∥∥∥∥∥
q

>
∑
n�J

2n/qn(d−1)/2Vq>2−rJ . (3.13)

By (3.9) and (3.5) (or (3.12)), we have

T 2 :=
∑
n>J

Tn>
∑
n>J

2−(r−1/p+1/q)pn/qn
(d−1)

q−p
2q V

1−p/q
q

> 2−(r−1/p+1/q)pJ/qJ
(d−1)

q−p
2q

(
2−(r+1/q)J J−(d−1)/2

)1−p/q

>2−rJ .

Lemma 3.7 is proved. �

Lemma 3.8. Suppose that 1 < q < 2, f ∈ MHr
p, and (1/p − 1/q)+ < r < (2/p − 1)/q. Then

we have

‖f − G
q
m(f )‖q>2−rJJ

d−1
pq(r+1/q) .

Proof. Let l = [u(d − 1) log2 J ], u = 1
p(r+1/q)

. By (3.3) we have

‖f − G
q
m(f )‖q �

∑
n�J+l

Tn +
∑

n>J+l

Tn =: T ′ + T ′′.
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Using Lemmas 3.3 and 3.5 with t = 2, we get

T ′ :=
∑

n�J+l

Tn>
∑

n�J+l

2−(rp−(2−p)/q)n/2n(d−1)/2V
1−p/2
q

> 2−rJJ (d−1)/22−l(rp−(2−p)/q)/2>2−rJJ
d−1

pq(r+1/q) .

Using Lemma 3.5 with t = max(p, q), we obtain

T ′′ :=
∑

n>J+l

Tn>
∑

n>J+l

2−(rp−(t−p)/q)n/tn(d−1)/tV
1−p/t
q >2−rJJ

d−1
pq(r+1/q) .

Lemma 3.8 is proved. �

Lemma 3.9. Suppose that 1 < p, q < 2, f ∈ MHr
p, and r = (2/p − 1)/q. Then we have

‖f − G
q
m(f )‖q>2−rJJ (d−1)/2 log2 J.

Proof. Let l = [u(d − 1) log2 J ], u = q/2. By (3.3) we have

‖f − G
q
m(f )‖q �

∑
n�J

Tn +
∑
n>J

Tn =: T 1 + T 2 = T 1 +
∑

J<n�J+l

Tn +
∑

n>J+l

Tn

=: T 1 + T 3 + T 4. (3.14)

Using (3.13) and Lemma 3.3 we get

T 1 :=
∑
n�J

Tn>
∑
n�J

2n/qn(d−1)/2Vq>2−rJJ (d−1)/2. (3.15)

Using Lemma 3.5 with t = max(p, q), we obtain

T 4>
∑

n>J+l

2−(rp−(t−p)/q)n/tn(d−1)/tV
1−p/t
q >2−rJJ (d−1)/2.

Using Lemma 3.5 with t = 2 again, we get

T 3>
∑

J<n�J+l

2−(rp−(2−p)/q)n/2n(d−1)/2V
1−p/2
q >l · 2−rJJ (d−1)/2

> 2−rJJ (d−1)/2 log2 J.

Lemma 3.9 is proved. �

Lemma 3.10. Suppose that 1 < q < 2, p > q, f ∈ MHr
p, and (2/p−1)+/q < r �(2/q−1)/q.

Then we have

‖f − G
q
m(f )‖q>2−rJJ (d−1)/2.

Proof. Applying (3.14) and (3.15), we get

‖f − G
q
m(f )‖q>2−rJJ (d−1)/2 + T 2.

Using Lemmas 3.3 and 3.5 with t = 2, we obtain

T 2>
∑
n>J

2−(rp−(2−p)/q)n/2n(d−1)/2V
1−p/2
q >2−rJJ (d−1)/2.

Lemma 3.10 is proved. �
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Proof of Theorems 1 and 2. The lower estimates of the quantities supf ∈MW r
p
‖f −G

q
m(f, �d)‖q

are given in Lemmas 2.1 and 2.2; the upper estimates of the quantities supf ∈MW r
p
‖f −G

q
m(f, �d)‖q

and supf ∈MHr
p

‖f − G
q
m(f, �d)‖q are given in Lemmas 3.6–3.10. Theorems 1 and 2

are proved. �
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